ON THE COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES
نویسندگان
چکیده
منابع مشابه
On the Complete Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables
متن کامل
Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables
The authors first present a Rosenthal inequality for sequence of extended negatively dependent (END) random variables. By means of the Rosenthal inequality, the authors obtain some complete moment convergence and mean convergence results for arrays of rowwise END random variables. The results in this paper extend and improve the corresponding theorems by Hu and Taylor (1997).
متن کاملOn complete convergence for arrays of rowwise dependent random variables
This paper establishes two results for complete convergence in the law of large numbers for arrays under %-mixing and ~ %-mixing association in rows. They extend several known results. AMS classi cation: 60F15
متن کاملOn the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
متن کاملComplete Convergence for Arrays of Rowwise Asymptotically Almost Negatively Associated Random Variables
Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise asymptotically almost negatively associated random variables. Some sufficient conditions for complete convergence for arrays of rowwise asymptotically almost negatively associated random variables are presented without assumptions of identical distribution. As an application, the Marcinkiewicz-Zygmund type strong law of large numbers for weighted s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2013
ISSN: 0304-9914
DOI: 10.4134/jkms.2013.50.2.379